\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \mathbf{1} \\
\& (\mathbf{i})
\end{aligned}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(10,0.8)
\] \\
(A) Either \(\mathrm{P}(\boldsymbol{X}=8)=\binom{10}{8} \times 0.8^{8} \times 0.2^{2}=0.3020\) (awrt) \\
or
\[
\begin{aligned}
\mathrm{P}(X=8) \& =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \\
\& =0.6242-0.3222=0.3020
\end{aligned}
\] \\
(B) Either
\[
\begin{aligned}
\mathrm{P}(X \geq 8) \& =1-\mathrm{P}(X \leq 7) \\
\& =1-0.3222=0.6778
\end{aligned}
\] \\
or
\[
\begin{aligned}
\mathrm{P}(X \geq 8) \& =\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10) \\
\& =0.3020+0.2684+0.1074=0.6778
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.8^{8} \times 0.2^{2}\) or 0.00671...
\[
\begin{aligned}
\& \text { M1 }\binom{10}{8} \times p^{8} q^{2} ;(\mathrm{p}+\mathrm{q} \\
\& =1)
\end{aligned}
\] \\
Or \(45 \times p^{8} q^{2} ;(\mathrm{p}+\mathrm{q}=1)\) \\
A1 CAO (0.302) not 0.3 \\
OR: M2 for 0.6242 0.3222 A1 CAO \\
M1 for 1 - 0.3222 (s.o.i.) A1 CAO awfw \(0.677-0.678\) or \\
M1 for sum of 'their' \(\mathrm{p}(\mathrm{X}=8)\) plus correct expressions for \(\mathrm{p}(\mathrm{x}=9)\) and \(\mathrm{p}(\mathrm{X}=10)\) \\
A1 CAO awfw \(0.677-0.678\)
\end{tabular} \& 3

2 \\

\hline (ii) \& | Let $X \sim \mathrm{~B}(18, p)$ |
| :--- |
| Let $p=$ probability of delivery (within 24 hours) (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.8 \\ & \mathrm{H}_{1}: p<0.8 \end{aligned}$ $\mathrm{P}(X \leq 12)=0.1329>5 \% \quad \text { ref: }[\mathrm{pp}=0.0816]$ |
| So not enough evidence to reject H_{0} |
| Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours |
| Note: use of critical region method scores |
| M1 for region $\{0,1,2, \ldots, 9,10\}$ |
| M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme | \& | B1 for definition of p |
| :--- |
| B1 for H_{0} |
| B1 for H_{1} |
| M1 for probability |
| 0.1329 |
| M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) |
| A1dep on both M's |
| E1dep on M1,M1,A1 for conclusion in context | \& 7 \\

\hline
\end{tabular}

(iii)	Let $X \sim \mathrm{~B}(18,0.8)$ $\mathrm{H}_{1}: p \neq 0.8$ LOWER TAIL $\begin{aligned} & \mathrm{P}(X \leq 10)=0.0163<2.5 \% \\ & \mathrm{P}(X \leq 11)=0.0513>2.5 \% \end{aligned}$ UPPER TAIL $\begin{aligned} & \mathrm{P}(X \geq 17)=1-\mathrm{P}(X \leq 16)=1-0.9009=0.0991>2.5 \% \\ & \mathrm{P}(X \geq 18)=1-\mathrm{P}(X \leq 17)=1-0.9820=0.0180<2.5 \% \end{aligned}$ So critical region is $\{\underline{0}, 1,2,3,4,5,6,7,8,9,10,18\}$ o.e. Condone $\mathrm{X} \leq 10$ and $\mathrm{X} \geq 18$ or $\mathrm{X}=18$ but not $\mathrm{p}(\mathrm{X} \leq 10)$ and $p(X \geq 18)$ Correct CR without supportive working scores SC2 max after the $1^{\text {st }} \mathrm{B} 1$ (SC 1 for each fully correct tail of CR)	B1 for H_{1} B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with $\mathbf{2 . 5 \%}$ (not 5\%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with $\mathbf{2 . 5 \%}$ (not 5\%) (seen or clearly implied) A1dep for correct upper tail CR	
		TOTAL	19

$\begin{aligned} & \hline \mathbf{2} \\ & (\mathrm{i}) \end{aligned}$	(A) $0.5+0.35+\boldsymbol{p}+\boldsymbol{q}=1$ so $\boldsymbol{p}+\boldsymbol{q}=0.15$ (B) $\quad 0 \times 0.5+1 \times 0.35+2 \boldsymbol{p}+3 \boldsymbol{q}=0.67$ so $2 \boldsymbol{p}+3 \boldsymbol{q}=0.32$ (C) from above $2 \boldsymbol{p}+2 \boldsymbol{q}=0.30$ so $\boldsymbol{q}=0.02, \boldsymbol{p}=0.13$	B1 $p+q$ in a correct equation before they reach $p+q=0.15$ B1 $2 p+3 q$ in a correct equation before they reach $2 p+3 q=0.32$ (B1) for any 1 correct answer B2 for both correct answers	1
(ii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=0 \times 0.5+1 \times 0.35+4 \times 0.13+9 \times 0.02=1.05 \\ & \operatorname{Var}(X)=\text { 'their } 1.05 '-0.67^{2}=0.6011(\text { awrt } 0.6) \end{aligned}$ (M1, M1 can be earned with their p^{+}and q^{+}but not A mark)	M1 $\quad \Sigma x^{2} p$ (at least 2 non zero terms correct) M1dep for (-0.67^{2}), provided $\operatorname{Var}(X)>0$ A1 cao (No n or n-1 divisors)	3
		TOTAL	7

