1 (i)	$X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {\binom{10}{8}} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt) or $P(X = 8) = P(X \le 8) - P(X \le 7)$ = 0.6242 - 0.3222 = 0.3020 (B) Either $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.3222 = 0.6778 or $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$ = 0.3020 + 0.2684 + 0.1074 = 0.6778	M1 $0.8^8 \times 0.2^2$ or 0.00671 M1 $\binom{10}{8} \times p^8 q^2$; (p +q =1) Or 45 × $p^8 q^2$; (p +q =1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for 1 – 0.3222 (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3
(ii)	Let $X \sim B(18, p)$ Let $p = \text{probability of delivery (within 24 hours) (for population)}$ $H_0: p = 0.8$ $H_1: p < 0.8$ $P(X \le 12) = 0.1329 > 5\%$ ref: [pp =0.0816] So not enough evidence to reject H_0 Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region {0,1,2,,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per	 B1 for definition of <i>p</i> B1 for H₀ B1 for H₁ M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) A1dep on both M's E1dep on M1,M1,A1 for conclusion in context 	7
	scheme		

(iii)	Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \le 10) = 0.0163 < 2.5\%$ $P(X \le 11) = 0.0513 > 2.5\%$ UPPER TAIL $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \ge 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 < 2.5\%$	 B1 for H₁ B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct 	
	So critical region is { $0,1,2,3,4,5,6,7,8,9,10,18$ } o.e. Condone X ≤ 10 and X ≥ 18 or X = 18 but <u>not</u> p(X ≤ 10) and p(X ≥ 18) Correct CR without supportive working scores SC2 max after the 1 st B1 (SC1 for each fully correct tail of CR)	comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct upper tail CR	7
		TOTAL	19

2 (i)	(A) $0.5 + 0.35 + p + q = 1$ so $p + q = 0.15$ (B) $0 \times 0.5 + 1 \times 0.35 + 2p + 3q = 0.67$ so $2p + 3q = 0.32$	B1 $p + q$ in a correct equation before they reach $p + q = 0.15$	1
	(C) from above $2p + 2q = 0.30$ so $q = 0.02$, $p = 0.13$	B1 2p + 3q in a correct equation before they reach 2p + 3q = 0.32	1
		(B1) for any 1 correct answer B2 for both correct answers	2
(ii)	$E(X^{2}) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$	M1 $\Sigma x^2 p$ (at least 2 non zero terms correct) M1dep for (- 0.67 ²),	
	Var(X) = 'their 1.05' - 0.67^2 = 0.6011 (awrt 0.6) (M1, M1 can be earned with their p ⁺ and q ⁺ but not A mark)	provided Var(<i>X</i>) > 0 A1 cao (No n or n-1 divisors)	3
		TOTAL	7

3 (i)	Let p = probability of remembering or naming all items (for population) (whilst listening to music.) H ₀ : p = 0.35 H ₁ : p > 0.35	B1 for definition of p B1 for H ₀ B1 for H ₁	
	$\rm H_1$ has this form since the student believes that the probability will be increased/ improved/ got better /gone up.	E1dep on p>0.35 in H ₀ In words not just because p > 0.35	4
(ii)	Let $X \sim B(15, 0.35)$ <i>Either</i> : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$ Or $0.8868 < 95\%$ So not enough evidence to reject H_0 (Accept H_0)	<i>Either:</i> M1 for probability (0.1132) M1 dep for comparison A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context	
		Or:	
	Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region. So not enough evidence to reject H ₀	M1 for correct CR(no omissions or additions) M1 dep for 8 does not lie in CR A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context	
	Or:	Or:	
	The smallest critical region that 8 could fall into is {8, 9, 10, 11, 12, 13, 14, and 15}. The size of this region is 0.1132	M1 for CR{8,9,15} and size = 0.1132 M1 dep for comparison	
	0.1132 > 5%	Alden	
	So not enough evidence to reject H ₀		
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved (when listening to music)	E1dep on all previous marks for conclusion in context	
			_
		TOTAL	4 8
L		l	I

4	<i>X</i> ~ B(12, 0.05)		
(i)	(A) $P(X = 1) = {\binom{12}{1}} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11}	
	OR from tables $0.8816 - 0.5404 = 0.3412$	M1 $\binom{12}{1} \times pq^{11}$ (p+q) = 1 A1 cao OR: M1 for 0.8816 seen and M1 for	3 2
	(B) $P(X \ge 2) = 1 - 0.8816 = 0.1184$	A1 cao M1 for $1 - P(X \le 1)$ A1 cao M4 for 12-0.05	2
	(C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	A1 cao (= 0.6 seen)	
(ii)	<i>Either</i> : $1 - 0.95^n \le \frac{1}{3}$ $0.95^n \ge \frac{2}{3}$	M1 for equation in <i>n</i>	
	$n \leq \log \frac{2}{3} / \log 0.95$, so $n \leq 7.90$ Maximum $n = 7$	M1 for use of logs A1 cao	
	<i>Or:</i> (using tables with $p = 0.05$): n = 7 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017$ (< ¹ / ₃) or 0.6983 (> 2/3) n = 8 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366$ (> ¹ / ₃) or 0.6634 (< 2/3) Maximum $n = 7$ (total accuracy needed for tables) <i>Or:</i> (using trial and improvement):	M1indep M1indep A1 cao dep on both M's	3
	$1 - 0.95^7 = 0.3017 (< \frac{1}{3}) \text{ or } 0.95^7 = 0.6983 (> 2/3)$ $1 - 0.95^8 = 0.3366 (> \frac{1}{3}) \text{ or } 0.96^8 = 0.6634 (< 2/3)$ Maximum $n = 7$ (3 sf accuracy for calculations) NOTE: $n = 7$ unsupported scores SC1 only	M1indep (as above) M1indep (as above) A1 cao dep on both M's	
(iii)	Let $X \sim B(60, p)$ Let $p =$ probability of a bag being faulty H ₀ : $p = 0.05$ H ₁ : $p < 0.05$	B1 for definition of p B1 for H ₀ B1 for H ₁	8
	$P(X \le 1) = 0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$ So not enough evidence to reject H ₀	M1 A1 for probability M1 for comparison A1	
	Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	E1	
		TOTAL	18